BIOLOGY 1510

BIOLOGICAL PRINCIPLES

Instructors: Dr. Eric Gaucher (EG) Dr. Chrissy Spencer (CS) 311 Cherry Emerson Building 474D Clough Commons tel: 404-385-3265 tel: 404-385-0539 email: eric.gaucher@biology.gatech.edu email: chrissy.spencer@biology.gatech.edu Office Hours: MW 2-4 & by appt Office Hours: T 2–4 pm & by appt Dr. Patrick Bardill Dr. Jung Choi (JC) 213 Cherry Emerson Building 385A Clough Commons tel: 404-384-8423 Tel: 404-385-1713 email: jung.choi@biology.gatech.edu patrick.bardill@gatech.edu Office Hours: MW 2-4 & by appt Director of Biology 1510 Labs

Lecture TAs:

Kasahun Neselu	Bonnie Shoai	Molly Reichert
kneselu3@gatech.edu	bshoai922@gatech.edu	mreichert9@gatech.edu
Cherry Emerson 122	Cherry Emerson 211	Cherry Emerson 301B
Office hours: MW 10-11	Office hours: R 2-4	Office hours: M 3-5

Schedule and Classroom:

Section A	Location	Time
Lecture	CULC 144	9:05–9:55 am MWF
Recitation	CULC 144	6:05–6:55 pm R (if no test)
Midterm exams	CULC 144	6:05–6:55 pm R
Final Exam Day/Time	CULC 144	F 5/1 8:00–10:30 am
Mastering Bio Code	BIOL1510AS2015	

Prerequisites:

Good background in high school biology and chemistry.

Description:

This is an **active-learning** class that introduces students to basic principles of modern biology, including biomacromolecules, bioenergetics, cell structure, genetics, homeostasis, evolution, and ecological relationships. This course will foster the development of critical scientific skills including hypothesis testing, experimental design, data analysis and interpretation, and scientific communication.

Textbook:

Scott Freeman (2011) *Biological Science*, 5th Edition. Benjamin Cummings, San Francisco. We have arranged special pricing through the bookstore for hardcover, looseleaf-bound and e-book versions of the textbook bundled with learning catalytics and access to the Mastering Biology website (required as part of course homework assignments). **If you previously took BIOL 1510 or 1520 at Georgia Tech** using Campbell & Reece's Biology (8th ed), please e-mail Dr. Spencer to discuss the best course of action regarding the textbook and Mastering Biology.

Participation:

Students are required to have a Learning Catalytics account for quizzes and interactive lecture sessions; points earned in learning catalytics will contribute to the "participation" portion of your course grade. Learning Catalytics can be purchased in one of three ways: as part of the bookstore textbook option bundles, bundled with Mastering Biology with e-text, or directly from learningcatalytics.com. You will need to bring an internet-ready smartphone, tablet, or laptop to class to earn these participation points. Phone and computer use is restricted to class-related material, and off-task use may result in loss of participation points for that day.

BIOLOGY 1510

BIOLOGICAL PRINCIPLES

Websites:

t2.gatech.edu for official course communication (through your @gatech.edu email), grades, lecture materials <u>masteringbio.com</u> for homework assignments and learning catalytics <u>piazza.com</u> is a forum for questions on course content and general how-tos <u>bio1510.biology.gatech.edu</u> for project uploads & evaluations, & extra on-line materials

Organization:

The course is organized into five modules, each of which deals with a major area of modern biology.

Lectures:

Attendance in lecture correlates strongly with performance in Biology 1510. We will make our lecture slides available via T-Square and urge you to download and print them for use in taking notes during lecture. The lectures and readings are complementary and some material will be presented only in lecture. Please complete each reading assignment before class.

Lecture Exams:

This course has four midterm exams and the cumulative final exam. The midterm exams will be held in the evening, are closed-book, and will be made up of multiple-choice questions based on topics, materials, and discussions presented in class, in the assigned readings, and in the Mastering Biology assignments. Exams and quizzes may also be given in the laboratory and on-line on Mastering Biology and/or T-square.

Missed Exams:

If you miss an exam for any reason, you will receive a grade of 0 (zero) on that exam unless you **petition us for a makeup exam within 24 h of the start of the missed exam**, and we approve your petition. Your petition must be submitted in writing (by e-mail) and must include documentation of a legitimate reason for missing the exam. You can, of course, submit your petition before the exam if you know of your scheduling conflict in advance. We will consider each petition individually. Examples of legitimate reasons to miss an exam include illness, illness or death in your immediate family, and participation in official university activities. If we approve your petition, we will remove the missed exam from your grade calculation by using the weighted mean of your other exam scores as your grade for the missed exam, making it completely neutral in your final point total.

Quizzes:

Short quizzes may be administered in lecture, lab, and online.

Homework:

Individual access codes for Mastering Biology are included with each new textbook, or may be purchased separately from the publisher at masteringbio.com. Throughout the semester you will have assignments in Mastering Biology. **Homework assignments are due at 9 am on the due dates** listed on the schedule below and on Mastering Biology's website. Please note that an assignment is due during Dead Week and plan accordingly. The Mastering Biology assignment scores are recorded and will comprise 5% of the overall course grade. We encourage you to complete your assignments on time; however, if you miss a due date you should still complete the assignment and accept a late penalty. **Late assignments will be accepted until 5 pm on the last day of classes.** Hints are available with no point penalty in Mastering. Mastering Biology offers animations, videos, interactive tutorials and simulations, as well as practice quizzes and an on-line version of the textbook (see Mastering's "Study Area" for access to these resources). **Adaptive Follow-up Assignments** become available after each assignment is due and can be used for additional review of material and to top up missed points on the related homework assignment. Students who score lower than 95% on a given assignment can earn points on the adaptive follow-up to raise their grade on the parent Mastering Bio assignment up to 95%. This grade adjustment will occur at the end of the semester and will not be reflected in the mastering bio online gradebook.

Group Projects:

For each module, 8–12 groups of 4 students each will each research an issue of current interest related to the topic of the module. Each student will be assigned to a group and a topic, and each group will complete only one group project during the semester. **Group assignments, details and deadlines will be provided once drop/add ends.** Grades will be based on instructors' grades and peer evaluations. The same group project grade will be assigned to all members of a group; each

BIOLOGY 1510

BIOLOGICAL PRINCIPLES

group member is fully responsible for all submitted project work. Some groups may have the opportunity to present their projects in class. Please note that in-class presentations and project-related activities may occur during the last week of classes and plan accordingly.

Recitations:

Lecture recitations occur weekly on Thursdays from 6:05–6:55 pm and are led by the recitation Teaching Assistant. Attendance is optional but strongly encouraged, as it is designed to improve your understanding of the lecture material. Bring your wifi enabled device to access Learning Catalytics during recitation to receive participation credit for your recitation attendance, which can add points to the Participation portion of your grade.

Labs:

Labs will begin the week of January 12. That week, you'll need the combined lab manual/notebook (ISBN 978-0-7380-6042-2), a 100% cotton lab coat, and you must wear closed-toe shoes that cover your entire foot. Note that while no labs meet during the first week of classes, you will have a Pre-lab assignment due before you meet for lab: part 1 is due on January 8th, part 2 is due before your lab section meets (see lab T-square announcement for details). Labs are held in Clough Commons and taught by Teaching Assistants (TAs); your TA contact information is available on the BIOL 1510 lab T-square site. All communications regarding lab should be directed to your lab TAs. Most FAQ about labs are answered on the lab T-square site and lab syllabus. Laboratory attendance is mandatory and each unexcused absence will lower your final *course* grade (not just your lab grade) by 5%. Details of the absence policy are in the BIOL 1510 lab syllabus.

Tutoring:

Georgia Tech offers a variety of free learning and communications support options. Learn about free tutoring resources at www.success.gatech.edu or at the Center for Academic Success's tutoring desk in Clough Commons 273. For assistance with revising lab reports or polishing a group project presentation, consult the Communications Center (Clough Commons 447 or commlab.gatech.edu).

Honor Code:

All students are expected to abide by the Academic Honor Code, which can be viewed online at www.honor.gatech.edu. Plagiarism on any assignment, including laboratory reports and the group project, will be referred to the Office of Student Integrity for adjudication. If you have any questions regarding your assignments and plagiarism, we encourage you to come consult with any of us before you submit the assignment.

Grading:

Your final grade will depend on the following combination of grades:

In-class exams (~ 10% each, see below)	40%
Final exam (Module 5 and cumulative)	20%
Group project (1)	10%
Participation (in-class & Mastering Bio)	10%
Laboratory	25%

Note that these components total 105%. The maximum overall score we will allow in this course is 100%, so this scheme includes 5% of extra credit. We will use the following procedure in calculating your final grade:

- 1. We will weight your 4 midterms 6%, 10%, 10%, and 14%, where your lowest midterm score will count 6% and your highest midterm score will count 14% of your final grade.
- 2. We will combine your exam, lab, and group activity and other scores into a raw composite score (0 100%) using the weights shown above.
- 3. We will assign final letter grades using the following scale:

 $\begin{array}{l} A: \geq 90.0\% \\ B: \geq 80.0\% \mbox{ and } < 90.0\% \\ C: \geq 70.0\% \mbox{ and } < 80.0\% \\ D: \geq 60.0\% \mbox{ and } < 70.0\% \\ F: < 60.0 \end{array}$

Module	Major theme	Teaching Goals
Intro	Course intro	Scientific method
1	• Evolution	• Earth history
		• History of life on Earth
		Mechanism of evolution
2	• Ecology	Behavior and evolution
		Simple population models
		Community structure
		Mass and energy flow through ecosystems
3	• Molecules,	Overview of biomolecules
	Membranes, and	 Introduction to bioenergetics: respiration and
	Metabolism	photosynthesis.
		 Chemiosmosis in respiration and photosynthesis
		Diversity of metabolic pathways
4	• Genetics	Mendelian genetics
		• DNA and genomics
		Gene regulation in prokaryotes and eukaryotes
5	 Biomedicine 	 Recombinant DNA technology & bioethics
		 Genetic diseases as model biological systems
		• Immunology
		Course synthesis

The schedule below is subject to change.

Spring 2015	Lecture	Lecture Topics	Who	Freeman 5th	Mastering Biology (due by 9 am)
5-Jan	1	Course overview	All		0.01 Intro to Mastering
		Intro to Instructors			Biology (ungraded, for practice only)
	M 1	Start Module 1: Evolution			
7-Jan	1.1	What is science?	EG	1.5: 9-14	
		What is the scientific method?			
		What is data?			
9-Jan	1.2	What is life?	EG	1: 1-9	1.01 Scientific method
		What is evolution?			
		An evolutionary framework for biology			
12-Jan	1.3	Evolution of evolutionary thought	EG	25: 444-464	
		Evidence for evolution			
		Evolution by natural selection			
		Common misconceptions			
14-Jan	1.4	Mechanisms of evolution	EG	26: 465-488	1.02 Mechanisms of evolution
16-Jan	1.5	Genetic variation	EG		
·		Hardy-Weinberg equilibrium			
		Mutation, drift, selection			
19-Jan		HOLIDAY			
21-Jan	1.6	Species and speciation	EG	27:489-504	1.03 Speciation
5		What is a species			1
		Mechanisms of speciation			
		Reinforcement & hybridization			
		Allopatric & Sympatric speciation			
23-Jan	1.7	Earth history	EG	28.1-2: 506-516	
5		Fossil record & radiometric dating		Radiometric Dating.pdf	
		Key events in the history of life		01	
26-Jan	1.8	Origin of life	EG	2.4: 32-36	1.04 Earth history
5		RNA world		4.3-4: 65-69	,
		Miller-Urey experiment		6.3: 91-94	
		5 1		30.3: 559-563	
28-Jan	1.9	History of life on Earth	EG	28.3-4: 516-523	1.05 History of life on earth
·		Life in the remote past			
		Patterns of biological diversity over time			
		Life and changes in the physical			
		environment			
		Biological classification			
	M 2	Start Module 2: Ecology			
30-Jan	2.1	Intro to Ecology	CS	52: 1059–1080	2.01 Ecology Intro
5		Physical Environment			
2-Feb	2.2	Behavioral ecology	CS	53: 1082–1098	2.02 Behaviour
		Foraging and defense against predation	-		
		Mate choice and sexual selection			
		Kin selection and altruism			
4-Feb	1.Synthesis		EG		
5-Feb	1.0 ymeneolo	Module 1 Exam (6 pm) covers Module 1		ut only.	
6-Feb	2.3	Population ecology	CS	54: 1101–1120	

Spring 2015	Lecture	Lecture Topics	Who	Freeman 5th	Mastering Biology (due by 9 am)
9-Feb	2.4	Structure, dynamics, & regulation of	CS		2.03 Population Ecology
		populations			1 07
		Life histories			
		Human populations through history			
		Population management			
11-Feb	2.5	Community ecology	CS	55: 1123–1146	2.04 Community Ecology
13-Feb	2.6	Competition, Predation, parasitism,	CS		
		mutualism			
		Keystone species			
		Island Biogeography			
16-Feb	2.7	Ecosystems	CS	56: 1148–1170	2.05 Ecosystems
18-Feb	2.8	Energy and material flow through	CS		;
		ecosystems			
		Biogeochemical cycles			
		Human impact on ecosystems			
20-Feb		Group A – project videos due (6 am)			
20-Feb	2.Synthesis	Module 2 Group Activity	CS		
	M 3	Start Module 3: Molecules, Membranes,			
	-	Metabolism			
23-Feb	3.1	Biomolecules	EG	Ch 3	3.01 Biomolecules (due 2/24)
		Small molecules		Ch 5	
		Major classes of macromolecule			
25-Feb	3.2	Cellular Structure	EG	6.1-6.2: 85-91	3.02 Cell Biology
		Lipid bilayer membranes			
		Archaeal membranes			
		Serial endosymbiosis and eukaryote			
		evolution			
26-Feb		Module 2 Exam (6 pm) covers Module 2	conter	nt only.	
27-Feb	3.3	Membrane function and transport systems	EG	6.3-6.4: 91-101	
		Membrane composition and adaptation			
		Membrane proteins			
		Transport: passive diffusion, osmosis,			
		facilitated diffusion, active transport			
2-Mar	3.4	Energetics and enzymes	EG	Ch 8	3.03 Energetics
		Thermodynamics and free energy	_		8
		Catalysis and kinetics, and enzymes			
		feedback regulation			
		Redox reactions			
		Membrane potential			
4-Mar	3.5	Cellular respiration	EG	9.5: 166-172	3.04 Respiration and Ox Phos
1 ±11.01	5.5	Oxidation of food and reduction of an e-		2.3. 100 ⁻ 1/2	5.0 + respiration and Ox 1 1108
		acceptor			
		Electron transport chain			
		Chemiosmotic generation of ATP			
		Aerobic vs anaerobic respiration			

Spring 2015	Lecture	Lecture Topics	Who	Freeman 5th	Mastering Biology (due by 9 am)
6-Mar	3.6	oxidative pathways glycolysis, substrate-level phosphorylation pyruvate oxidation citric acid cycle regeneration of NADH, fermentation	EG	9.1-9.4: 155-165	
9-Mar	3.7	Evolution of mitochondria and eukaryotes Amino acid and lipid breakdown Consequences of defects in metabolism	EG	Smith and Baco 2003 9.6: 172	
11-Mar	3.8	Photosynthesis Overview: reduce CO2 to organic C Pigments and light absorption Origin of photosynthesis: single PS, cyclic photophosphorylation	EG	10: 177-189	3.05 Fermentation
13-Mar		Group B – project videos due (6 am)			
13-Mar	3.9	Carbon fixation	EG	10:190-192	3.06 Photosynthesis
<u>16-20 M</u> 23-Mar	ar 3.10	Spring Break Photosynthetic strategies C3 and C4 photosynthesis Recap: compare and contrast respiration & photosynthesis, mitochondria & chloroplasts.	EG	10:193-195	
25-Mar	3.Synthesis	Module 3 Group Activity	EG		
26-Mar	·	Module 3 Exam (6 pm) covers Module 3	conter	nt only.	
	M 4	Start Module 4: Genetics		·	
27-Mar	4.1	Chromosomes and Cell Division Mitosis Meiosis	JC	12.1-12.2: 220-228 13.1-13.2: 238-248	4.01 Meiosis
30-Mar	4.2	Mendelian genetics	JC	14: 256-280	
1-Apr	4.3	Mendel's model genetic system Monohybrid and dihybrid crosses	JC		4.02 Mendelian Genetics
3-Apr	4.4	Sex-linkage and pedigree analysis Probabilities of genetic outcomes Genetics of human disease	JC		
6-Apr	4.5	DNA as the basis of inheritance Experimental evidence for role of DNA DNA structure Semi-conservative replication of DNA	JC	15.1-15.3: 285-294 4.1-4.2: 58-65	4.03 DNA
8-Apr	4.6	Gene expression: DNA to protein Basics of transcription and translation	JC	Ch 16 Ch 17	4.04 Gene Expression
10-Apr		Group C – project videos due (6 am)			
10-Apr	4.7	Prokaryotic and eukaryotic genomics Genome size and organization	JC	21: 390-400	4.05 Genomics
		Mammalian genomes Genome evolution			
	M 5	Mammalian genomes			
13-Apr	M 5 5.1	Mammalian genomes Genome evolution	CS	20.1-20.2: 368-376 5.1 Recombinant DNA	5.01 Recombinant DNA
13-Apr 15-Apr		Mammalian genomes Genome evolution Start Module 5: Integrative Biology	CS CS		5.01 Recombinant DNA

Spring 2015	Lecture	Lecture Topics	Who	Freeman 5th	Mastering Biology (due by 9 am)
17-Apr	5.2	Stem cells, cloning and bioethics	CS	20.5: 383-385 22.2: 408-410 5.2 Cloning and stem cell:	s
20-Apr	5.3	Immunology and infectious diseases	CS	51.1-51.4: 1037-1055 5.3 Adaptive Immunity	5.02 Immunology
22-Apr	5.4	Human health and evolution Balancing selection Sickle cell, Thalassemia, Cystic Fibrosis	CS	5.4 Human health and eve	olution
24-Apr	5.Synthesis	,	All		
8:00-10:3	30 am Wed 30	Final Exam in CULC 144 is cumulative	, with a	n emphasis on Module 5	content.

* Mastering Biology assignments due by 9 am.