Current research is directed at understanding the origin and evolution of RNA assemblies and activities that gave rise to RNA-based genetic and metabolic systems, and the interaction of a bacterial RNA-binding protein Hfq that is crucial for the regulation of gene expression by short regulatory RNAs.
The first research area is examining the assembly and activities of RNA under plausible early earth conditions ( e.g. anoxic environment, freeze-thaw cycles of aqueous solutions). We have shown that Fe2+ can replace Mg2+ and enhance ribozyme function under anoxic conditions. Fe2+ was abundant on early earth and may have enhanced RNA activities in an anoxic environments. Freeze-thaw cycles can also promote RNA assembly under conditions where degradation is minimized.
The second area of research is investigating the mechanism of the Hfq protein. Hfq is a bacterial RNA-binding protein that facilitates the hybridization of short non-coding regulatory RNAs (sRNA)to their target regions on specific mRNAs. sRNAs are important elements in the regulation of gene expression for bacteria.Hfq is highly conserved among bacterial phyla and has been shown to be a virulence factor in several bacterial species. The interactions of wild type and mutant Hfq proteins with various RNAs are examined using biochemical/ biophysical methods such as the electrophoresis mobility shift assay, fluorescence spectroscopy, and mass spectrometry.