The Parker H. Petit Institute for Bioengineering & Bioscience awarded the 2014 Suddath Symposium Graduate Student Awards to three students for their grand achievements in biological or biochemical research at the molecular or cellular level.

"It was a difficult decision – we had a very strong applicant pool this year," said Nick Hud, Associate Director for the Parker H. Petit Institute for Bioengineering and Bioscience and Professor in the School of Chemistry and Biochemistry.

The first place award was given to Natalie Saini who is pursuing her Ph.D. in Molecular and Cell Biology.  Saini’s research is focused on determining the mechanisms underlying erroneous DNA synthesis during double strand break (DSB) repair in eukaryotic cells, an important process implicated in the generation of instability in cancers. Her work has been published in Nature, Biochimie, Molecular Cell and PLoS Genetics..

“I am very honored to receive the prestigious Suddath award,” said Saini.  “I am thankful to the reviewers for recognizing my accomplishments and grateful for all of the opportunities and resources that have been provided through my advisor, Kirill Lobachev, as well as through Georgia Tech’s Petit Institute.”

Saini will receive $1,000 and will give a research presentation to the Petit Institute community at the 2014 Suddath Symposium to be held on February 20, 2014 at Georgia Tech.  She will also have her name added to the Suddath Award recognition plaque at the Petit Institute.

“Natalie is smart, motivated and hardworking scientist. She has excellent
analytical skills and she is not afraid to try new approaches and techniques,” said her advisor, Kirill Lobachev.

Lauren Austin received the 2nd place award for her research in nanobiotechnology in the laboratory of Mostafa El-Sayed where she is focused on the interactions of plasmonic nanoparticles (NPs) with cancerous cell lines and the exploitation of their unique optical properties to reveal molecular information during important cellular functions (i.e. proliferation, cell cycle progression, and cell death) in real-time.

Anthony Awojoodu, a doctoral student in Biomedical engineering, was recognized for a 3rd place award for his accomplishments in the laboratory of Edward Botchwey, where he has focused his research on therapies to cure, treat and prevent complications of sickle cell disease using sphingolipid signaling and metabolism.  

Austin and Awojoodu will also each receive cash awards.

John McDonald, professor in the School of Biology and director of the Integrated Cancer Research Center, has also spent many years as the chief scientific officer for Georgia Tech’s Ovarian Cancer Institute.

Collaboration doesn’t just come easy for him. It is at the very foundation of his research approach when it comes to understanding cancer. McDonald, then, was a natural choice among faculty members who will relocate to the Engineered Biosystems Building (EBB) when it opens in 2015. Campaign Georgia Tech has been instrumental in raising money for the building.

“I’m convinced that the effective treatment of complex diseases like cancer will require an understanding of the interactive relationships that underlie cell function,” McDonald said. “I am excited about the prospect of working with other researchers committed to a ‘systems’ approach to better understand the basis of cancer onset and progression.”

The EBB was conceptualized and designed, and will be constructed, according to one fundamental tenet — that understanding and fighting multifaceted disease requires a new way of doing things; that new insights emerge not from the solitary confines of one laboratory or one discipline but from shared resources, spaces, and expertise.

The collaborative spaces within the facility are decidedly intentional and planned. The five-story, 200,000-square-foot building will house faculty members and other researchers in three research neighborhoods: chemical biology, cell and developmental bioengineering, and systems biology. Within each neighborhood, scientists and engineers from many different disciplines will share lab, office, and communal spaces, making it possible for them to share ideas, perspectives, and resources in an entirely new way.

For many years, McDonald has taken a collaborative approach to cancer research, working with faculty in chemistry and computer science to develop new, highly accurate diagnostic tests for ovarian and prostate cancer, and partnering with biomedical engineers, chemists, and biologists in cell therapies and personalized cancer medicine. Once the EBB is operational, collaboration will drive its every function and use, which will help accelerate the pace of discovery.

“We are not striving to compete with cancer centers like MD Anderson,” explained McDonald. “We are complementing their efforts by developing these unique integrative approaches, and this building will greatly enhance our ability to do that.”

For more about Campaign Georgia Tech, click here.

Editor’s Note: This article is part of a monthly series that focuses on Campaign Georgia Tech.

Competition may have a high cost for at least one species of tropical seaweed.

Researchers examining the chemical warfare taking place on Fijian coral reefs have found that one species of seaweed increases its production of noxious anti-coral compounds when placed into contact with reef-building corals. But as it competes chemically with the corals, the seaweed grows more slowly and becomes more attractive to herbivorous fish, which boost their consumption of the skirmishing seaweed by 80 percent.

This appears to be the first demonstration that seaweeds can boost their chemical defenses in response to competition with corals. However, determining whether such responses are common or rare awaits additional studies with a broader range of seaweeds and corals.

The research, sponsored by the National Science Foundation and the National Institutes of Health, was published January 8, 2014, in the journal Proceedings of the Royal Society B.

“The important takeaway is that competition between corals and seaweeds can cause dramatic changes in seaweed physiology, both in terms of their growth and their defense,” said Douglas Rasher, who was a graduate student at the Georgia Institute of Technology when the research was conducted. “These changes have potentially cascading effects throughout the rest of the reef community.”

Rasher, now a postdoctoral research associate at the Darling Marine Center at the University of Maine, conducted the research in collaboration with Mark Hay, a professor in the Georgia Tech School of Biology. Hay and Rasher have used coral reefs as field laboratories, studying the chemical signaling that occurs during coral-seaweed competition, and evaluating how herbivorous fish affect the interactions – and long-term health of reefs.

“We previously found that chemical warfare is fairly common among seaweeds and corals, and that several seaweed species are particularly harmful to corals,” Rasher said. “This research explored the degree to which seaweed allelopathy – chemical warfare – is dynamic, how it changes in response to competition, and also whether competition changes the efficacy of other seaweed defenses used against herbivores.”

The findings may also challenge the popular notion that plants cannot change rapidly and strategically in response to their environments.

“We tend to think of plants as being fixed in their behavior,” said Hay. “In fact, plants such as these seaweeds assess their environment continuously, altering biochemically what they are doing as they compete with the coral. These algae somehow sense what is happening and respond accordingly. They may appear passive, but they are really the tricky chemical assassins of coral reefs.”

For this study, Rasher and Hay selected two seaweed species, one (Galaxaura filamentosa) known for its toxicity to corals, and the other (Sargassum polycystum), which does not chemically damage corals. They fragmented pieces of a common coral, Porites cylindrica, glued them into cement cones and placed them on a rack on a reef located in the shallow ocean off the Fiji Islands. The fragments were allowed to grow in the racks for two years.

At the start of the experiment, the researchers took half of the coral samples and dipped them into bleach to kill the living organisms, leaving only the calcium carbonate skeletons. The skeletons served as the control group for the experiments that followed.

The researchers collected samples from both species of seaweed, and split each sample in two. One half of each sample was assigned to a treatment group, while the other half went to the control group. The treatment group was placed into contact with living corals, while the control group was placed into contact with coral skeletons.

The seaweeds were then allowed to interact with the corals and coral skeletons for eight days. After that, a portion of each sample was removed and chemical compounds extracted from them and embedded into small gel strips that were then adhered to other living corals to assess the toxicity of the compounds. The researchers repeated the experiment, placing entire seaweeds in contact with corals to determine if the plants displayed the same effect.

“We saw that Galaxaura, the chemically rich seaweed and the species we knew was allelopathic, had up-regulated its chemistry to become more potent – nearly twice as damaging – when it was in contact with the living coral, compared to those individuals that had only been in contact with the coral skeletons,” Rasher said.

None of the extracts from the Sargassum damaged the corals.

Until this point, the seaweeds and corals had been protected from herbivorous fishes. The next step was to place seaweed samples – both those that had competed with the living coral and those that hadn’t – onto nylon ropes in a location accessible to fish. The researchers created 15 pairs of these samples and placed them at different reef locations.

“We saw that for the non-allelopathic seaweed, Sargassum, fishes didn’t differentiate – they consumed both the treatment and control seaweeds at equal rates,” Rasher said. “But given the option to choose between treatment and control Galaxaura, fishes consumed 80 percent more of the seaweed portions that had been in contact with a living coral.”

The researchers don’t know all the factors that may have made the chemically noxious seaweed more palatable to the fish. However, those seaweed portions that had been competing with coral had less effective chemical defenses against fish. When the researchers took extracts from treatment seaweed and control seaweed and applied them to a palatable seaweed species not previously used in the experiment, fish preferred the seaweed coated with extracts from the portions that had been competing with corals, indicating that competition had compromised the seaweed’s chemical defenses against herbivores.

For the future, the researchers want to study chemical defenses in other seaweeds to determine if what they’ve seen is common among tropical seaweeds that engage in chemical warfare. For now, they don’t know if the chemical defenses evolved to compete with coral or perhaps for another reason, such as fighting off harmful microbes.

The fact that corals may cause seaweeds to up-regulate their anti-coral defenses could help explain why coral reefs rarely bounce back once they begin a decline and become dominated by seaweeds. The research also demonstrates the importance of studying broad interactions among numerous species within complex communities like coral reefs.

“These kinds of interactions show a mechanism that, once the reef begins to crash, could help maintain that decline,” Hay said. “There may be insights here that we could use to better manage, and hopefully restore, some of these systems. We are also hoping that what we learn may bleed over into other systems.”

This research was supported by the National Science Foundation (NSF) under award (OCE-0929119), by the National Institutes of Health (NIH) under award (U01-TW007401), and by the Teasley Endowment to Georgia Tech. The conclusions or recommendations contained in this news release are those of the authors and do not necessarily represent the official positions of the NSF or NIH.

CITATION: Douglas B. Rasher and Mark E. Hay, “Competition induces allelopathy but suppresses growth and anti-herbivore defense in a chemically rich seaweed,” (Proceedings of the Royal Society B, January 2014).  http://dx.doi.org/10.1098/rspb.2013.2615

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181

Media Relations Contacts: John Toon (jtoon@gatech.edu) (404-894-6986) or Brett Israel (brett.israel@comm.gatech.edu) (404-385-1933)

Writer: John Toon

Taking a DNA molecule into the vicinity of a homologous target gene by a DNA aptamer provides a many-fold enhancement of gene correction frequency at that genetic locus. Aptamer-guided gene targeting, or AGT, is a novel approach for genetic engineering developed by Patrick Ruff in Francesca Storici’s group.

Gene targeting is a genetic technique to modify an endogenous DNA sequence at will, by changing a mutant DNA sequence into a wild-type copy or vice versa in its genomic location via homologous recombination. Gene targeting is therefore a fundamental process not only for functional analysis of genes, proteins, and complex biological systems, but potentially also in molecular therapy for the prevention and cure of human genetic diseases originating from specific DNA alterations. However, editing of genetic information is a challenging task. The goal of gene correction goes far beyond the process of making a desired change in a chosen target gene in the most efficient way. It is essential that the product of the modified gene should then be functional, the DNA correction stable, and the engineering process accurate and restrained to the target in order to minimize unwanted DNA, cellular, and/or tissue damage.

In the most recent years a lot of progress has been made in activating cellular DNA repair and recombination machinery at the target sites for gene correction, mainly via the specific induction of DNA double-strand breaks (DSBs) at these sites. However, there has been much less focus on the other essential component for gene targeting: the donor DNA necessary to make the desired modification. To address the problem of donor DNA availability, Patrick Ruff, fresh PhD recipient in the lab of Francesca Storici from the School of Biology at Georgia Tech, developed a novel gene targeting approach, aptamer-guided gene targeting (AGT), in which he bound the homing endonuclease I-SceI by a DNA aptamer fused to the donor DNA of choice, to target the donor DNA to a desired genetic locus located next to an I-SceI cut site. DNA aptamers, which mimic antibodies, are sequences of DNA that are able to bind to a specific target with high affinity because of their unique secondary structure. Using a variant of capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX) called “Non-SELEX”, Patrick obtained a DNA aptamer for the I-SceI endonuclease, and with the assistance of Storici lab graduate students Kyung Duk Koh and Havva Keskin, and the research scientist Rekha Pai, found that the AGT approach increases the efficiency of gene targeting by guiding an exogenous donor DNA into the vicinity of the site targeted for genetic modification. Dr. Storici said: "by utilizing DNA oligodeoxyribonucleotides that contained the I-SceI aptamer sequence as well as homology to repair the I-SceI DSB and correct a target gene, we were able to increase gene targeting frequencies up to 32-fold over a non-binding control in yeast and up to 16-fold over a non-binding control in human cells".

This study shows that DNA aptamers can be exploited to increase donor DNA availability, and thus promote the transfer of genetic information from a donor DNA molecule to a desired genetic locus. The AGT strategy offers a novel way to increase gene targeting efficiency, represents the first investigation to use aptamers in the context of gene correction, and provides a new direction to the field of genetic engineering.

The study is just published as an article in the journal Nucleic Acids Res (Wednesday February 5, 2014):

Ruff, P., Koh K.D., Keskin H., Pai R.B. and Storici, F. Aptamer-guided gene targeting in yeast and human cells, Nucleic Acids Res, Feb 5 2014 doi:10.1093/nar/gku101 http://nar.oxfordjournals.org/cgi/reprint/gku101?
ijkey=AAb4RMp5Dicgeun&keytype=ref

 This project was supported by the Georgia Tech Fund for Innovation in Research and Education (GTFIRE-021763), the NIH grant (R21EB9228), and the Georgia Cancer Coalition grant (award R9028).

Exploiting the use of DNA single- and double-strand breaking forms of the I-SceI endonuclease to stimulate homologous recombination and gene targeting in budding yeast and in human cells, the research of Samantha S. Katz in Francesca Storici’ lab provides new mechanistic insights into the process of nick-induced DNA recombination and on the function of nicking enzymes in genetic engineering.

Enzymes generating a site-specific double-strand break (DSB) in DNA, including homing endonucleases, such as I-SceI, are widely utilized to promote strand exchange between homologous sequences for purposes of characterizing mechanisms of DNA recombination and repair, and to facilitate targeted gene correction in many cellular systems from bacteria to human cells. However, in the most recent years, enzymes capable of making single-strand breaks (SSBs), nickases, have attracted a lot of attention. While a DSB can efficiently stimulate recombination, the competing non-homologous end-joining pathway for DSB repair is often favored, especially in human cells, and poses a major safety problem for gene targeting strategies, in particular for gene therapy applications, because it frequently leads to in/dels or chromosomal rearrangements. Recent work has shown that an SSB not only facilitates gene targeting, but importantly also leads to less off-site targeting damage than a DSB.

Despite the relevance of nicking enzymes, there are only very few available nicking systems, and still a lot remains to be understood about how a nick stimulates recombination and gene targeting in cells. The work conducted by Samantha S. Katz, recent PhD recipient in Francesca Storici lab at the School of Biology of Georgia Tech, in collaboration with Dr. Frederick Gimble from Purdue University, pioneers the in vivo function of the first available I-SceI nicking variant (K223I I-SceI). The team demonstrates that K223I I-SceI nickase efficiently stimulates gene correction in both yeast and human cells, and that such stimulation can occur even at loci 10 kb distant from the break site. Moreover, said Dr. Storici: <<we prove that the K223I I-SceI nickase stimulates recombination via a mechanism that is different from that by which the wild-type I-SceI double-strand nuclease works>>. The authors propose two models for nick-induce gene correction, either by simple unwinding of the broken strand at the nick site, or as a consequence of replication fork collapse and strand resection.
    
This study provides robust support to the fact that SSB-driven gene editing is a valuable mechanism for applications in molecular biology and biotechnology. The study is just published as an article in the journal PLoS One (Tuesday February 18, 2014):

Katz, S. S., Gimble, F. S. and Storici, F. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells
PLoS One, Vol 9, Issue 2, e88840, 2014 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088840


This project was supported by the Georgia Cancer Coalition grant (award R9028), the National Science Foundation grant MCB-1021763, and the Graduate Assistance in Areas of National Need (GAANN) fellowship.

If a driver is traveling to New York City, I-95 might be their route of choice. But they could also take I-78, I-87 or any number of alternate routes. Most cancers begin similarly, with many possible routes to the same disease. A new study found evidence that assessing the route to cancer on a case-by-case basis might make more sense than basing a patient’s cancer treatment on commonly disrupted genes and pathways. 

The study found little or no overlap in the most prominent genetic malfunction associated with each individual patient’s disease compared to malfunctions shared among the group of cancer patients as a whole.

“This paper argues for the importance of personalized medicine, where we treat each person by looking for the etiology of the disease in patients individually,” said John McDonald, a professor in the School of Biology at the Georgia Institute of Technology in Atlanta. “The findings have ramifications on how we might best optimize cancer treatments as we enter the era of targeted gene therapy.”

The research was published February 11 online in the journal PANCREAS and was funded by the Georgia Tech Foundation and the St. Joseph’s Mercy Foundation.

In the study, researchers collected cancer and normal tissue samples from four patients with pancreatic cancer and also analyzed data from eight other pancreatic cancer patients that had been previously reported in the scientific literature by a separate research group.

McDonald’s team compiled a list of the most aberrantly expressed genes in the cancer tissues isolated from these patients relative to adjacent normal pancreatic tissue.

The study found that collectively 287 genes displayed significant differences in expression in the cancers vs normal tissues. Twenty-two cellular pathways were enriched in cancer samples, with more than half related to the body’s immune response. The researchers ran statistical analyses to determine if the genes most significantly abnormally expressed on an individual patient basis were the same as those identified as most abnormally expressed across the entire group of patients.

The researchers found that the molecular profile of each individual cancer patient was unique in terms of the most significantly disrupted genes and pathways.

“If you’re dealing with a disease like cancer that can be arrived at by multiple pathways, it makes sense that you’re not going to find that each patient has taken the same path,” McDonald said.

Although the researchers found that some genes that were commonly disrupted in all or most of the patients examined, these genes were not among the most significantly disrupted in any individual patient.

“By and large, there appears to be a lot of individuality in terms of the molecular basis of pancreatic cancer,” said McDonald, who also serves as the director of the Integrated Cancer Research Center and as the chief scientific officer of the Ovarian Cancer Institute.

Though the study is small, it raises questions about the validity of pinpointing the most important gene or pathway underlying a disease by pooling data from multiple patients, McDonald said. He favors individual profiling as the preferred method for initiating treatment.

The cost of a molecular profiling analysis to transcribe the DNA sequences of exons — the parts of the genome that carry instructions for proteins — is about $2,000 (exons account for about two percent of a cell’s total DNA). That’s about half the cost of this analysis five years ago, McDonald said, and a $1,000 molecular profiling analysis might not be far off.

“As costs continue to come down, personalized molecular profiling will be carried out on more cancer patients,” McDonald said.

Yet cost isn’t the only limiting factor, McDonald said. Scientists and doctors have to shift their paradigm on how they use molecular profiling to treat cancer.

“Are you going to believe what you see for one patient or are you going to say, ‘I can’t interpret that data until I group it together with 100 other patients and find what’s in common among them,’” McDonald said. “For any given individual patient there may be mutant genes or aberrant expression patterns that are vitally important for that person’s cancer that aren’t present in other patients’ cancers.”

Future work in McDonald’s lab will see if this pattern of individuality is repeated in larger studies and in patients with different cancers. The group is currently working on a genomic profiling analysis of patients with ovarian and lung cancers.

“If there are multiple paths, then maybe individual patients are getting cancer from alternative routes,” McDonald said. “If that’s the case, we should do personalized profiling on each patient before we make judgments on the treatment for that patient.”

Loukia Lili, of Georgia Tech’s Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, was the study’s first author. Co-authors included Lilya Matyunina and DeEtte Walker of Georgia Tech, and George Daneker, MD, of the Cancer Treatment Centers of America SE Regional Facility in Newnan, Ga.

This research is supported by the Georgia Tech Foundation and the St. Joseph’s Mercy Foundation. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Loukia N. Lili, et al., “Evidence for the Importance of Personalized Molecular Profiling in Pancreatic Cancer,” (PANCREAS, February 2014). (http://dx.doi.org/10.1097/MPA.0000000000000020).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Media Relations Contacts: Brett Israel (@btiatl) (404-385-1933) (brett.israel@comm.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu)

Writer: Brett Israel

Jeffrey Skolnick, Ph.D., Mary and Maisie Gibson Chair and Georgia Research Alliance Eminent Scholar in Computational Systems Biology at Georgia Tech, will receive the Southeastern Universities Research Association’s (SURA) 2014 Distinguished Scientist Award. The award is given annually to a scientist whose extraordinary work fulfills the society’s mission of “fostering excellence in scientific research.”

Skolnick, who also serves as Director of the Integrative BioSystems Institute, will be presented the award and its $10,000 honorarium on March 18, 2014 at the SURA Board of Trustees meeting at the University of West Virginia at the SURA’s spring board of trustee’s meeting.

“Jeff is extremely deserving of this award as he is one of the outstanding thought leaders in the field and has been called ‘visionary’ and ‘an out of the box thinker’ by many colleagues,” stated Mark Hay, Ph.D., professor and Harry and Linda Teasley Chair in Environmental Biology in the School of Biology at Georgia Tech. “Not only has his research provided unique and fundamental insights into the behavior of biological systems, he has developed several of the best algorithms for virtual ligand screening and for predicting protein structure-function relationships.”

Skolnick is the author or co-author of over 350 journal articles in the fields of systems and computational biology and his cutting edge research on protein structure and function has provided remarkable insights into the relative roles of physics and evolution in dictating the properties of protein structure and function and holds the potential to dramatically accelerate and enhance the drug discovery process.

“Jeff is a world-class scientist with tremendous imagination and creativity,” stated Terry Snell, Chair of the School of Biology at Georgia Tech. “His research has significantly enhanced our understanding of protein structure and function.”

Over his career, Skolnick has made significant scientific contributions. He developed the first coarse grained model for protein structure prediction, the first successful multiscale modeling approach to structure prediction, the first effective medium model for a membrane that enabled the successful prediction of peptide orientation and conformation with respect to the membrane, Fuzzy Functional Forms that were the first low resolution approach to protein function prediction, and the highly accurate EFICAz approach to enzyme function inference. His more recent work has significant applications to both drug discovery and to improving our fundamental understanding of the possible origin of life.

The SURA Distinguished Scientist Award was established in 2007 to commemorate the organization’s 25th Anniversary and is considered its highest honor. SURA’s Development & Relations Committee manages the solicitation, screening and selection of the recipient for this award from a SURA member institution.

By inferring and resurrecting ancient sequences for an enzyme called uricase, the group was able to determine when and why the enzyme stop functioning in apes (including humans) while remaining functional in most other mammals. See the following link for an insightful article written by National Geographic: http://phenomena.nationalgeographic.com/2014/02/17/a-resurrected-cretaceous-answer-to-the-disease-of-kings/

Congratulations to the following faculty and staff members who were honored at the 2014 Faculty  and Staff Honors Luncheon on April 11. 

Georgia Tech Chapter Sigma Xi Awards

Young Faculty Awards
Satish Kumar, Mechanical Engineering
Christopher Rozell, Electrical and Computer Engineering

Sustained Research Award
C.F. Jeff Wu, Industrial and Systems Engineering

Institute Research Awards

Outstanding Achievement in Research Enterprise Enhancement
Mary Hallisey Hunt, Strategic Energy Institute

Outstanding Achievement in Research Innovation
Mark Prausnitz, Chemical and Biomolecular Engineering

Outstanding Doctoral Thesis Advisor
John Cressler, Electrical and Computer Engineering

Outstanding Faculty Leadership for the Development of Graduate Research Assistants
Kenneth Sandhage, Materials Science and Engineering

Outstanding Faculty Research Author
Seth Marder, Chemistry and Biochemistry

Outstanding Achievement in Research Program Development
Gang Bao, Biomedical Engineering 

ANAK Award
Christine Valle, College of Engineering 

Outstanding Staff Performance Awards
Phyllis Means, Office of the Executive Vice President for Research
David Knobbe and Matthew Marcus, Campus Recreation Center
D. Matthew Watkins, Georgia Tech Police Department
Dustin Hamilton, Campus Recreation Center
Stephanie Ray, Dean of Students 

Outstanding Management in Action Award
Marc Pline, Biology 

Administrative Excellence Award
David Williams, Campus Recreation Center 

Undergraduate Educator Awards
Michael Rodgers, Civil and Environmental Engineering
Chrissy Spencer Biology 

Innovation and Excellence in Laboratory Instruction Award
Essy Behravesh, Biomedical Engineering

CETL/BP Junior Faculty Teaching Excellence Awards
J. Brandon Dixon, Mechanical Engineering
Flavio Fenton, Physics
Brian Hammer, Biology
Kamran Paynabar, Industrial and Systems Engineering
Anne Pollock, Literature, Media, and Communication
Kari E. Watkins, Civil and Environmental Engineering 

Education Partnership Awards
Eric Gaucher, School of Biology
Ryan Randall, School of Biology

Curriculum Innovation Award
Amy Pritchett, Aerospace Engineering 

Innovation in Co-Curricular Education Award
Jennifer Leavey, College of Sciences 

Faculty Award for Academic Outreach
Stefan France, Chemistry and Biochemistry 

Eichholz Faculty Teaching Awards
Linda Green, Biology
Donald Webster, Civil and Environmental Engineering 

Steven A. Denning Faculty Award for Global Engagement
Michael Best, International Affairs 

Academic Advisor Awards

Outstanding Undergraduate Academic Advising: Staff
Kim Paige, Biomedical Engineering

Outstanding Undergraduate Academic Advising: Faculty
Linda Green, Biology 

Faculty Honors Committee Awards

Outstanding Undergraduate Research Mentor (Faculty) Award
Margaret Kosal, International Affairs
Kenneth Gall, Materials Science and Engineering

Outstanding Professional Education Award
A.P. Sakis Meliopoulos, Electrical and Computer Engineering

Outstanding Service Award
Michael Hunter, Civil and Environmental Engineering

Class of 1934 Outstanding Innovative Use of Education Technology Award
James Hamblen, Electrical and Computer Engineering

Class of 1934 Outstanding Interdisciplinary Activity Award
Bernard Kippelen, Electrical and Computer Engineering

Class of 1940 W. Howard Ector Outstanding Teacher Award
Joel Sokol, Industrial and Systems Engineering

Class of 1940 W. Roane Beard Outstanding Teacher
Mike Stilman, Interactive Computing

Class of 1934 Distinguished Professor Award
Zhong Lin Wang, Materials Science and Engineering

Monica’s research will focus on a systems biology approach towards the developing of a malaria vaccine. Using gene expression profiling of the human immune response to malaria vaccination, Monica hopes to investigate the safety and efficacy of vaccines, along with the most effective strategies of vaccine implementation.  The Schlumberger Foundation is a prestigious foundation, which selects outstanding women from developing counters to aid in their pursuit of graduate studies in engineering, science and technology disciplines worldwide.  Grant recipients are selected both for their leadership capabilities and scientific talents.  Ultimately they are expected to return to their home country’s to become inspiration role models and disseminate the information gained during their studies.  Monica is from Colombia and her research has direct impact into her home country, as malaria is one of the major public health problems of the tropics. 

Pages

Subscribe to School of Biological Sciences | Georgia Institute of Technology | Atlanta, GA | Georgia Institute of Technology | Atlanta, GA RSS